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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2kk3 

THE SIMILARITY LAW FOR HYPERSONIC FLOW ABOUT 

SLENDER THREE-DIMENSIONAL SHAPES 

By Frank M. Hamaker, Stanford E. Neice, 
and A. J. Eggers, Jr. 

SUMMARY 

The similarity law for steady, inviscid hypersonic flow about 
slender three-dimensional shapes is derived in terms of customary 
aerodynamic parameters. To have similarity of flow, the law states 
that the lateral dimensions of the shapes in question and their angles 
with respect to the flight direction must be inversely proportional to 
their flight Mach numbers. A direct consequence of this law is that 
the ratio of the local static pressure to the free-stream static 
pressure is the same at corresponding points in similar flow fields. 

The law is applied to the determination of simple expressions for 
correlating the forces and moments acting on related shapes operating 
at hypersonic speeds. The shapes considered are wings, bodies, and 
wing-body combinations. In the special case of inclined bodies of 
revolution, these expressions are extended to include some significant 
effects of the viscous cross force. 

Results of a limited experimental investigation of the pressures 
acting on two inclined cones are found to check the law as it applies 
to bodies of revolution. Further investigation is necessary, however, 
to determine the range of applicability of the law. 

INTRODUCTION 

The hypersonic similarity law for steady potential flows about 
thin airfoil sections and slender nonlifting bodies of revolution was 
first developed by Tsien in reference 1. The law states that the flows 
about these shapes will be similar provided (a) the free-stream Mach 
numbers are large compared to 1, (b) the shapes have the same thickness 
distributions, and (c) the products of the free-stream Mach numbers and 
the thickness ratios are the same. Hayes (reference 2) investigated 
this law from the standpoint of analagous unsteady flows and concluded 
that it would also apply to nonpotential flows containing pronounced 
shock waves and vorticity, provided the local Mach number was everywhere 
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large compared to 1. He also reasoned that similitude could be obtained 
in hypersonic flows about slender three-dimensional bodies of arbitrary 
shape; however, the form of the similarity law in terms of customary 
aerodynamic parameters was not determined. 

Ehret, Rossow, and Stevens (reference 3) investigated the hyper- 
sonic similarity law for nonlifting bodies of revolution by comparing 
pressure distributions calculated by means of the method of character- 
istics. They found the law to be applicable over a wide range of Mach 
numbers and thickness ratios. Their investigation did not, however, 
include the effects of vorticity arising from the curvatiire of the nose 
shock wave. Rossow (reference k)   continued this investigation and 
found that the law was equally valid when the effects of vorticity were 
included in the calculations. These findings corroborated, in part, 
the observations of Hayes and indicated that the law may be used with 
confidence to investigate the aerodynamic characteristics of nonlifting 
bodies of revolution at hypersonic speeds. 

With the successful application of the hypersonic similarity law 
to nonlifting bodies of revolution, it appeared desirable to determine 
the form of the law, in terms of customary aerodynamic parameters, for 
slender three-dimensional bodies of arbitrary shape. An investigation 
of the more general law was therefore undertaken. The purpose of this 
paper is to present the results of this study. 

SYMBOLS 

a speed of sound 

A characteristic reference area of body (A = b t) 

b characteristic span or width of body 

c characteristic chord or length of body 

ea„   section drag coefficient of circular cylinder with axis 
perpendicular to the flow 

Ac 

CA mean ca„ for a body of revolution ac c * \ 
„„. .  ^ /side force 

CP    side-force coefficient / — — 
° I | PoVo2A 

Cc    side-tforce parameter 
j_ /  drag 

CD    drag coefficient j -j ^ 
2 Povo A 
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CD 

V 

c7 

drag parameter 

rolling-moment coefficient 

rolling-moment parameter 

lift coefficient '       lift 

rolling moment 

| PoV0
2Ab    ) 

2 P0V0
2A 

CL 

Cm 

^n 

f 

F 

g 

G 

Z ,ni,n 

lift parameter 

pitching-moment coefficient ( Pitching moment 

^ |PoVo2Ac 

pitching-moment parameter 

yawing-moment coefficient ! yaving moment 

V \  p0V0
2Ab 

yawing-moment parameter 

dimensionless perturbation potential function 

viscous force or moment function 

dimensionless body shape function 

body shape function 

unit vectors along coordinate axes x,y,z, respectively 

direction cosines of the vector if with respect to the x,y,z 
axes, respectively 

Kb 
Kt 
Ka 
Kß 
K6 

M 

5 

P 

r 

>  hypersonic similarity parameters 

Mach number 

unit outer normal to surface of body 

static pressure 

radius of body of revolution at any station x 
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Rc    cross Reynolds number "based on maximum body diameter and the 
component of the free-stream velocity normal to the body axis 

s     cross force per unit length 

t     characteristic thickness or depth of body 

u,v,w components of velocity, V, in the direction of the x,y,z axes, 
respectively 

V resultant velocity 

x,y,z Cartesian coordinates 

a angle of attack 

ß angle of sideslip 

7 ratio of specific heats 

5 angle of roll 

!,TI,C dimensionless coordinates corresponding to x,j,z,  respectively 

0 orifice location on the test cones 

p stream density 

q) perturbation velocity potential 

Subscripts 

v    refers to viscous cross-force effects 

o     refers to free-stream conditions 

1,2,3 refers to different functions F, Cm, or %n,  except as noted 

Superscript 

refers to vector quantities 
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DEVELOPMENT OF THE SIMILARITY LAW 
FOR LWISCTD THREE-DIMENSIONAL FLOW 

The following assumptions are made in this analysis:  (l) the Mach 
number of the uniform free stream is large compared to 1 (i.e., the 
flow is hypersonic), (2) the disturbance velocities are small compared 
to the free-stream velocity, and (3) the flow is of the steady potential 
type.  It is clear from the first two assumptions that the analysis is 
strictly applicable only to slender shapes in hypersonic flow. As was 
pointed out in the introduction, however, the last assumption should 
not restrict the range of applicability of the results to potential 
flows. The purpose of making this assumption is to simplify the 
analysis. 

A slender body is 
oriented in x,y,z space 
as shown in sketch (a) 
with the free-stream 
velocity V0 directed 
along the x axis. 

The general differ-      *P ». 
ential equation of motion 
for steady flow about the 
body can be written in 
the following form: 

(a2-u2)ux + (a
2-v2)vy + (a

2-w2)wz - uv(uy + vx) - 

vw(vz + wy) - wu(wx + uz) =0 (2) 

where the condition of irrotationality requires that 

uy = vx , vz = wy , wx = uz (2) 

As a consequence of equation (2), a perturbation velocity 
potential, q>, can be defined as follows: 

u = V0 + <PX , v = cpy t    v = cpz (3j 

The energy equation, relating free-stream and local conditions on 
the body, can be written in the following form: 

a0
2 + ^ V0

2 = a2 + 2li (u2 + ya + ^ 
(*) 
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Introducing the perturbation potential expressions of equation (3)> 
equation (^4-) then becomes 

a      7-1 v 2 ao    + ~5^ v0 i2 + ^ (Vo2 + 2V0<Px + ^x2 + <Py2 + <PZ
2) (5) 

If equations (2), (3), and (5) are now introduced into equation (l), 
the steady-state, three-dimensional potential equation of motion is 
obtained as follows: 

a0 - 2li    (2Vocpx + cp/ + q>y
2 + cpz

2)   _ v0
2 - 2V0CPx " <$x 

7-1 
^    (2Vo<Px + ^x    + V + ^ )   " V 

2  - Ili    (2VocPx + <PX
2 + «Py2 + «Pz2)   - <PZ

S 

<Pyy + 

9zz  " 

<Pxx + 

2(V0<Py + <Px<Py)<Pxy - 2(V09Z + <Px<Pz)<Pxz  - ^zV = 0 (6) 

For hypersonic flow about slender shapes, cpx> 9y> 9z> 
an<3- ao ar© small 

compared to V0, and a simple analysis further indicates that 9x is 
small compared to 9y and tyz-1    Accordingly, the exact potential 
equation is simplified by neglecting, in general, all terms of higher 
order than 9y2 and 9z2> and by neglecting, in particular, all terms 
except -V0

2 in the coefficient of cpxx- Equation (6) may therefore 
be reduced to the form 

Mo2 %oc 
Mo 

f'-1* To  Tx % 
7+ 1 %, 
2ao2 y 

7-1 cp 2 

2a^ z 9. yy 

Mo 
aQ 

1 - (r-D =? % - $£ V 7 + 1 
2aQ

2 V ^zz + 

2 jr «TV + 2 ^ ^^2 + A V^V = 0 (7) 

1 To illustrate, for two-dimensional flows of the type considered in this 
analysis the compatability equations, which hold along characteristic 

lines, take on the form AV = ± i Av. Since M is large compared 
M 

to 1, this equation shows that AV is small compared to Av. It 
follows, then, that 9X is small compared to Cfe. From a different 
point of view, the statement that «ftc is small compared to <PZ is 
just another way of stating a well-known property of hypersonic flows, 
namely, that although the direction of the resultant velocity vector 
may change appreciably, the magnitude of the velocity vector changes 
only slightly.  
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This relation is employed as the equation of motion in the following 
analysis. The boundary conditions remain to be determined. 

The shape of a slender three-dimensional body is defined in its 
reference position^ in the flow field by the functional relation 

G(x,y,z) = 0 (8) 

The unit normal at a point on the surface is given by the vector 

N = Zi + mj + nk (9) 

and the requirement that the body be slender is satisfied by the 
restriction 

I «1 (10) 

at all points. One boundary condition is, of course, the requirement 
that there be no normal component of flow at the surface of the body. 
This condition is satisfied for the body in its reference position if 
the relation 

and hence 

V • N = (Vo + <PX) I  + <Pym + cpzn = 0 

(V0 + cpx)Gx + <PyGy + cpzGz = 0 (11) 

holds everywhere on the surface. This expression can readily be 
generalized to include steady motion at small angles of attack, side- 
slip, and roll. Rotating the body to these angles relative to the 
wind introduces a corresponding rotation of the normals to the body.3 

In terms of the direction cosines of the original normals, then, the 
expression for the rotated normals may be given in the form 

N* = (I +  mß - na)i + (m + nS - Zß)3 + (n + la- m5)k     (12) 

The body is defined as being in its reference position when the nose 
coincides with the origin of the coordinate system and the angles of 
attack, sideslip, and roll are zero. 

3 In general, such rotations are not commutative; that is, the result is 
not the same when the sequence of the rotations is changed. This 
difficulty is avoided by restricting the analysis to consider only 
terms of the first order in the angles of rotation. This restriction 
is consistent with the initial assumptions but does not have to be 
made in the case of the angle of roll as will be discussed in greater 
detail later in the report. 
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Imposing the requirement specified by equation (10), equation (12) is 
further reduced to the form 

N» = ( I + mß - __)i + (m +'nS)3 + (n - mß)_ (13) 

If the vector N in equation (ll) is replaced by N' as defined in 
this expression, then the desired generalized boundary condition on the 
surface of the body, is given by the equation 

V0(GX + ßGy + ccGz) + Cpy(Gy + &GZ) + <PZ(GZ - 6Gy) = 0      (lk) 

In this equation the derivatives of G are, of course, evaluated on 
the surface of the body in the reference position, while the derivatives 
of 9 are evaluated at corresponding points on the body in its rotated 
position- The remaining boundary condition is, of course, 

Cpx =cpy =cpz = 0 at x = - «> (15) 

In order to obtain the similarity law for flow about related 
bodie's, it is convenient to express the equations of motion and boundary 
conditions in a nondimensional form. A dimensionless coordinate system 
is therefore introduced with the affine transformation 

6 = f, 1 = *, £ = f (16) 

and a nondimensional perturbation potential function is defined by the 

relation4 

f(t,i.» - T(*'y>'\. ■   (17) 

aoM0c I - ) 

where c, b, and t are a characteristic length, width and height of a 
body, respectively. Under the coordinate transformation given above, 
equation (8) takes the form 

g(i,Ti,5) = 0 (18) 

Substituting equations (l6) and (17) into equation (7) there is then 
obtained for the equation of motion 

Kt f|| 1 -(7-DKt* *t   -  ^(g)V ^  - If Kt= f|*](g)%, 

4The function chosen here differs from those employed by Tsien and 
Hayes. It has the advantage of simplifying the expressions for the 
boundary conditions.  
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7-1   f    Ktf  „2„  2      7+1 

2 (fe)   Kt* ft»f^ + ^ f Sf6£ +  ( § J Kt* WiS = ° (19) 

In'an analogous manner, equations (lU) and (15) for the boundary   * 
conditions assume the nondimensional forms 

H + 
Kß K^      f Kt  V / Kb 

S
T K^ " gm+ ^ Kb" y ^ (, *l + gcK5 i£ 

6 I H ' gTiKs § ) = 0 (20) 

on the surface,  and 

f! = f^ = f£ = 0    at     | =  -« (21) 

where the hypersonic similarity parameters for a constant value of y 
are given as follows: 

Kt=M0| (22) 

Kb = Mo | (23) 

Ka = M0a (2*0 

Kß = M0ß (25) 

K5 = 5 (26) 

With equations (19) through (26),  the similarity law for inviscid 
hypersonic flow about slender shapes can be deduced, for it is clear 
that the flow now depends only on the dimensionless shape function g 
(i.e., the thickness distribution of a shape or body in the flow) and 
the similarity parameters previously given. Thus the law may be stated 
as follows: For bodies described by the same dimensionless function 
and immersed in flows such that the same values of the similarity para- 
meters are obtained, the disturbance flow fields are defined by the 
same dimensionless perturbation potential function, and are, therefore, 
similar. Thus for similarity of flow about bodies, it is only necessary 
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that their lateral dimensions and angles with respect to the flow 
direction be inversely proportional to the Mach number of the flow. 

This statement of the law is essentially a generalization of that 
originally presented by Tsien. The new similarity parameters K^,  Ka, 
KR, and Ks define additional restrictions on the shapes and attitudes 
of related bodies;5 however, the similarity parameter Kt (and the 
restriction imposed by it) is the same as the one in reference 1, 
obtained from the considerations of two-dimensional and axially 
symmetric flows. In regard to the new similarity parameters, attention 
is called to K5 which, it is noticed, does not contain M0. The roll 
angle is the same, then, for related bodies in similar hypersonic flows. 
This result could have been deduced intuitively, and it seems equally 
clear that if the rotations to angles of attack, sideslip, and roll are 
required to be in the same sequence (see footnote 3), then the result 
is also valid for arbitrarily large angles of roll. 

APPLICATIONS OF THE SIMILARITY LAW AND DISCUSSION OF RESULTS 

In the preceding section the hypersonic similarity law was 
developed in a general form. The law is employed in this section to 
correlate the physical properties of similar flow fields and the aero- 
dynamic characteristics of some related shapes of practical interest. 

Some effects of viscosity are considered in the investigation of 
the aerodynamic characteristics for inclined bodies of revolution. The 
assumption of inviscid flow is, however, retained elsewhere in this 

study. 

Correlation of the Physical Properties 
of Similar Flow Fields 

In aerodynamic studies, perhaps the most important physical 
property of a fluid is the static pressure. This pressure at any point 
in a flow field of the type under consideration is given by the relation 

\ x  2a2 

5The terms "related bodies" will be used, henceforth, to identify 
bodies that are described by the same shape function g.  
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Simplifying this equation to include only terms of the proper order and 
transforming the resulting expression to nondimensional form yields 
the following relation: 

I -   {  1 - (7-l)Kt* fft - If *<   ^Y. a_2 M ^)V + Kt Kb/ ±T» 

7 
7-1 

The derivatives of f are, however, functions only of the similarity 
parameters and the dimensionless coordinates; therefore, this expression 
may be written as 

yo  =^ (i,T),£; Kt, Kb, Ka, Kß, K5) (27) 

It is clear from this relation that for similar flows, the ratio of the 
local to the free-stream static pressure is the same at corresponding 
points (6,TJ,0 in the flow fields. A direct consequence of this rule 
is that the center of pressure is at the same (i,T},£) location on 
related bodies in similar hypersonic flows.  It may easily be shown that 
this rule can also be applied to relate other physical properties of 
similar flow fields, such as temperatures, densities and Mach numbers. 

Correlation of the Aerodynamic Characteristics 
of Some Related Shapes 

Bodies of Revolution.- For bodies of revolution, equation (27) 
reduces to the form e 

£=£- (*>^;  Kt> *a) 
-^o  &O 

where Kb is eliminated as it is identical to Kt- This equation is 
integrated in the usual manner to obtain the lift, drag, and pitching- 
moment coefficients of related bodies. It is convenient to write the 
expressions for these coefficients in the following forms: 

Because of the axial symmetry of bodies of revolution only angles of 
attack are considered. This consideration obviates a discussion of 
force and moment characteristics at angles of sideslip or combined 
angles of attack and sideslip, while roll, of course, has no meaning. 
It is clear, then, that the similarity parameters KR and K$ are 
eliminated from this analysis. 
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M0CL = Ch = CL(Kt, KQ,) 

MO
2
CD = Cb = Sb(Kt, Ka) 

M0Cm = C"m = 6m(Kt, Ka) 

(28) 

Where CL, <_, and Cm are designated lift, drag,and pitching-moment 
parameters, respectively.7 It is apparent from these relations that 
the corresponding force and moment parameters have identical values for 
related bodies of revolution provided the corresponding similarity 
parameters have identical values. It will now be shown that this 
conclusion can be generalized to include the significant effects of the 
viscous cross forces on related inclined bodies. 

The viscous cross force arises from the flow (usually partially 
separated) of the boundary-layer transverse to the body axis. A method 
of estimating this force along with the lift, drag, and pitching-moment 
coefficients associated with it has been suggested by Allen in refer- 
ence 5, and is presented in the appendix of the present paper. The 
resulting expressions for these coefficients (see equation (c) in the 
appendix) are transformed to the nondimensional form and the following 
relations are obtained: 

MQCLV = Cdc Px(Kt, Ka) 

Mo2CDv = cdc F2(Kt, Ka) 

MQCM^ = cdc F3(Kt, Ka) 

>  (29) 

For slender bodies of revolution of the type under consideration, cdc 
is primarily a function of the Mach number and Reynolds number of 
the flow component normal to the body axis. Consequently, these 
expressions can be reduced to the form 

MoCLv = °Ly  = ^(Kt, K^ Rc) 

M
O
2
CDV = %y = ^v{Kt'  *-> Rc) (30) 

MoCmv = C. = Cm (Kt, J^,  Rc) 

where Rc is the cross Reynolds number. It is clear when comparing 
these relations with those of equation (28) that the conclusion drawn 
from the latter relations applies with equal validity when viscous 
cross-flow effects are considered, provided that Rc is included as a 
similarity parameter.8  

^If the angle of attack is zero, Ka = 0 and the expression for the 
drag parameter reduces to a form equivalent to that obtained by Tsien. 

8It is assumed that the viscous flow considered here does not signi- 
ficantly influence the potential, inviscid flow discussed previously. 
Hence the force and moment coefficients resulting from these flows 
may be superimposed.   
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A limited experimental check of the similarity law for bodies of 
revolution has been made in the Ames 10- by l4-inch supersonic wind 
tunnel. Two cones having thickness ratios of 0.333 and 0.204 were 
tested at Mach numbers of 2.75 and k.k6}  respectively; thus the value 
of Kt was 0.91- Equipment for measuring forces and moments was not 
available at the time of these tests; therefore, pressures only were 
measured on the cones. These measurements were made at the locations 
shown in figure 1 for angles of attack up to 5°. Overlapping values 
of Ka up to 1^4-° were thus obtained. The ranges of cross-flow Reynolds 
numbers covered in the tests are shown in figure 2, and it is evident 
that identical values of Rc could not be obtained for the two cones 
at the same values of KQ,. 

Experimentally determined pressure ratios are shown in figure 3 as 
a function of Ka. Agreement with the prediction of the similarity law 
is generally observed, in that the values of p/p0 for corresponding 
points on the two bodies lie essentially along the same curve. The 
exception to this agreement is on the lee sides of the cones (0=180°) 
where it is noted that significantly different curves are defined. 
This difference is believed to be the result of dissimilar flow sepa- 
ration from the two cones, caused in turn by the marked differences in 
the cross-flow Reynolds number previously mentioned. Separation 
phenomena should be essentially similar at identical cross-flow Reynolds 
numbers, in which case the corresponding values of p/pQ should agree. 

Wings, Bodies, and Wing-Body Combinations.- The general form of the 
similarity law must be employed in this phase of the investigation. In 
order, then, to obtain expressions for the force and moment parameters 
of wings, bodies, and wing-body combinations, it is necessary to inte- 
grate equation (27) over related, but otherwise arbitrary shapes. The 
resulting expressions are 

M0CL = ~L = CLCK^K^K^Kß,^) 

M0
2CD = CD = S^Kt^K^Kß,^) 

MocC = CC = cc(Kt>K'b>v:a>Kß>K§) 

%Cm    = S; = C^K^K^K^Kß,^) + ^ Cm2(Kt,Kb,Ka,Kß,K6)       >  
(3l) 

Cn = Cn = ^(Ki.^K^Kß,^) + ^ C^K^K^K^K^Kg) 

M0CZ = Cz = Cz(Kt,I%,Ka,Kß,K6) 

*o 

It is clear from the equations for the pitching-moment and yawing- 
moment parameters that these two parameters cannot be correlated for 
related wings, bodies or wing-body combinations of slender, but otherwise 



Ik MCA TN 2kk3 

completely arbitrary shape.9 Correlation can be achieved, however, if 
two restrictions are placed on the shapes of these configurations. ^For 
the case of pitching moment, the restriction is that the I    direction 
cosines of the outer normals to the surface must, in general, be small 
compared to the corresponding n direction cosines. Thus, for example, 
vertical fins (alone) having surface slopes in the chordwise direction 
generally of the same order of magnitude as the slopes in the depth- 
wise direction are eliminated from consideration. Such a shape is 
shown in sketch (b). In the case of yawing moment, the restriction 

—X 

0>) (o) 

is that I   must, in general, be small compared to m. Thus, for 
example, wings, as shown in sketch (c), having chordwise slopes 
generally of the same order of magnitude as the spanwise slopes, are 
eliminated from consideration. With these restrictions, the terms in 
the relations for MoCm and Cn containing 1/MQ

2
 as their coef- 

ficient may be neglected, and thus correlating expressions for these  - 
parameters are obtained. In this case the more general consequence of 
the similarity law for inviscid hypersonic flow is apparent; namely, 
the corresponding force and moment parameters have identical values for 
related wings, bodies or wing-body combinations, provided the corres- 
ponding similarity parameters have identical values.10 

It is of interest to examine these relations as they apply to thin 
wings. If, for spanwise symmetric wings, only angle of attack is  

9The second term on the right in the relations for M0Cm and Cn 
arises from the moment due to the nonsymmetry of the drag force. 

i°It is clear that the conclusion drawn from equation (2d), applying 
to bodies of revolution, is a restricted form of this statement. It 
is not evident, however, that this statement can be generalized to 
include significant viscous effects, as was possible with the afore- 

mentioned conclusion.  —  
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considered, the similarity parameters Kß and K5 vanish and only 
three of the aerodynamic coefficients remain. The corresponding force 
and moment parameters are reduced to the forms11 

M0CL = CL = CL(Kt, Kb, Ka) 

%2% = CD = CD(Kt, Kb, Ka) 

MoCm = Cm = Cm(Kt, Kb, Ka) 

}   (32) 

These relations also apply, of course, to wing sections. In this 
case, b and therefore Kb are infinite and it is seen from equa- 
tions (19) and (20), that the terms involving Kb vanish yielding the 
two-dimensional equations for hypersonic flow. The similarity para- 
meter Kb is thus eliminated from equation (32). This result is 
equivalent to that presented in reference 1.12 

Of practical importance is the conclusion to be drawn from the 
dimensionless equation of motion as it applies to thin wings. 
It is noticed in the equation that the parameter Kb always appears in 

/ ^t \ t2 

the form ^ — J     = —.  If b ±s  0f the same order of magnitude as c, 

then, consistent with the other approximations made in developing this 

equation, the terms involving (J^J      are to be neglected. Performing 

this.operation, however, yields the equation of motion for two- 
dimensional flow. Thus it is indicated that, if the aspect ratio is of 
the order of magnitude of one or greater, hypersonic flow about wings 
may be treated approximately as a two-dimensional-flow problem. The 
latter problem is, of course, relatively simple to solve. 

A particular example is chosen to illustrate the application of 
the similarity law to wing-body combinations, which may be thought of, 
for this purpose, simply as irregular shapes. In figure k  are shown ' 
two related cruciform wing and body combinations at related angles of 
attack. It is seen that in going from a Mach number of k  to a Mach 
number of 8, the wing and body thickness, the wing spans, and the angle 
of attack are decreased by one-half in order to maintain similarity of 
flow. The effects of the changes on some of the aerodynamic coef- 
ficients are also shown in the figure. 

"Parameters equivalent to these were obtained by Tsien and, althou-h 
not published, were presented in the form of lecture notes. As so 
often happens, these notes were brought to the attention of the 

^authors after completion of this investigation. 
The exponents of M0 obtained here are different from those obtained 
in reference 1, because b t is used as a reference area, rather 
than c b. 
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CONCLUDING REMARKS 

The similarity law for steady, inviscid hypersonic flow about 
slender three-dimensional shapes has been derived in terms of customary 
aerodynamic parameters. To have similarity of flow, the law states 
that the lateral dimensions of the shapes in question and their angles 
with respect to the flight direction must be inversely proportional to 
their flight Mach numbers. A direct consequence of this law is that 
the ratio of the local static pressure to the free-stream static 
pressure is the same at corresponding points in similar flow fields. 
With the aid of this law, simple expressions were obtained for corre- 
lating the forces and moments acting on related shapes in hypersonic 
flows. The shapes treated were wings, bodies, and wing-body combina- 
tions . In the case of inclined bodies of revolution, these expressions 
were generalized to include the significant effects of the viscous 
cross force. The law, as it applies to bodies of revolution, was sub- 
jected to a limited experimental check by comparing pressures measured 
on two inclined cones in related flows. Theory and experiment were in 
good agreement except on the lee sides of the cones where the dissimilar 
cross-flow Reynolds numbers would be expected to yield dissimilar 
separated flows. 

The range of applicability of the law for practical three- 
dimensional shapes appears to merit investigation. If this range is 
relatively as wide as the corresponding range for noninclined bodies 
of revolution, the law should prove of value in correlating experimental 
data, and in simplifying theoretical calculations of the aerodynamic 
characteristics for families of these shapes. 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif., June 5, 1951- 
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APPENDIX 

FORCES AMD MOMENTS DUE TO VISCOUS CROSS FLOWS 

ON BODIES OF REVOLUTION 

In reference 6, Prandtl demonstrated that laminar viscous flows 
over infinitely long inclined cylinders may be treated by considering, 
independently, the components of the flow normal and parallel to the 
axis of the cylinder. Jones, in reference 7, applied this concept to 
the study of boundary-layer flows over yawed cylinders. The work of 
Prandtl and Jones suggests, as indicated by Allen in reference 5, that 
the cross force on slender inclined bodies of revolution may be esti- 
mated in the following manner: Each cross section of the body is 
treated as an element of an infinite cylinder of the same radius. The 
cross force per unit length on such a cylinder is given by the follow- 
ing equation: 

sv = r cdc pcVo sin a (Al) 

The incremental lift, drag,and moment produced by this cross force 
are then given by the relations 

lift = r c^ Po^o si-n a cos a 

drag = r cd p V 2sin3cc 

moment = r x cd p0VQ
2sin2a 

(A2) 

Retaining leading terms in a and integrating over the body, 
where r = r(x), the aerodynamic coefficients are given by the equations 

"D, 

^v 

2c 
CW = 

dr.   a' 

2?d a3 r 

2c dp a' 

Ac 

r dx 

r dx 

rx dx 
J 

(A3) 

where the reference area is proportional to the maximum cross-sectional 
area of the body and "tbe reference length is the body length.  The 
coefficient cac is the mean c<ic for the body of revolution, and has 
therefore been taken outside the integral. 
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(b)    t/c*.204 

180' 
135 

(c)    Orifice  location, O 
in transverse plane, A-A 

Figure /. — Location of orifices on two cones tested at Kf= 0.91. 
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i 

£ 

I 

4 8 12 
Similarity parameter, Ka , degrees 

Figure 2. —   Variation  of cross Reynolds number, Re , with Ka 

for two cones tested at Kf = 0.91. 
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